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Abstract. Using extensive Monte Carlo simulations, transfer matrix techniques and conformal invariance,
ferromagnetic random q−state Potts models for 3 ≤ q ≤ 8 are studied in the vicinity of the critical tem-
perature. In particular the surface and bulk magnetization exponents β1 and β are found monotonically
increasing with q. At the critical temperature, different moments (n) of the magnetization profiles are cal-
culated which are all found to accurately follow predictions of conformal invariance. The critical correlation
functions show multifractal behaviour, the decay exponents of the different moments both in the volume
and at the surface, are n−dependent.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
64.60.Fr Equilibrium properties near critical points, critical exponents – 75.10.Hk Classical spin models

1 Introduction

The presence of quenched i.e. time independent disor-
der could modify the cooperative behaviour of physical
systems with many degrees of freedom. In classical sys-
tems, where thermal fluctuations dominate quantum fluc-
tuations the effect of disorder in the pure system phase-
transition point can be analyzed by relevance-irrelevance
criterions. For second-order transitions, according to the
well known Harris criterion [1], disorder appears to be
a relevant perturbation which moves the random system
towards a new fixed point when the specific heat expo-
nent α of the pure system is positive. In the other situa-
tion, α < 0, the disordered system remains in the pure
model universality class. The two-dimensional random-
bond Ising model (RBIM) corresponds to the marginal
case. It has been extensively studied in the 80’s (for re-
views of theoretical and numerical studies, see Refs. [2,3],
respectively). The effect of randomness on first-order
phase transitions was considered later. Imry and Wor-
tis argued that quenched disorder could induce a second-
order phase transition [4]. This argument was then rig-
orously proved by Aizenman and Wehr, and Hui and
Berker [5,6]: In two dimensions, even an infinitesimal
amount of quenched impurities changes the transition into
a continuous one.

The random bond Potts model (RBPM) is the para-
digm of systems the pure version of which undergoes a
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b UMR 7556 du CNRS

second-order or a first-order transition, depending on the
number of states, q, per spin [7]. In two dimensions, the
second-order regime q ≤ 4 has been considered by a num-
ber of authors, using perturbative field-theoretical tech-
niques [8–13] or Monte Carlo (MC) simulations [14–16].
On the other hand, in the first-order regime, q > 4, con-
formal perturbation techniques can not be used around
the pure model transition point and the resort to numeri-
cal calculations becomes essential. Both Monte Carlo sim-
ulations and Transfer Matrix (TM) techniques, combined
to standard Finite Size Scaling (FSS) [17–22] and con-
formal methods [23–27] were used at the random fixed
point of self-dual disordered models to study bulk critical
properties.

The surface properties of dilute or random-bond mag-
netic systems were on the other hand paid less atten-
tion. Generally surface quantities, such as magnetization,
energy-density, etc. are characterized by a different set
of scaling dimensions, than their bulk counterparts. For
example in the pure Ising model, bulk magnetization van-
ishes as m ∼ tβ , with β = 1/8, whereas for the surface
magnetization the decay-law, m1 ∼ tβ1 , involves the sur-
face exponent β1 = 1/2, where t denotes the reduced
temperature. Quite generally, the scaling laws involving
surface and/or bulk exponents can be deduced from the
assumption of scale invariance. For example the singular
part of the bulk, fb, and surface, fs, free-energy densities
in a d-dimensional system behave under a scaling trans-
formation, when lengths are rescaled by a factor b > 1,
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l′ = l/b, as

fb(t, h) = b−dfb(bytt, byhh), (1)

fs(t, h, hs) = b−(d−1)fs(bytt, byhh, byhshs). (2)

The whole set of bulk and surface critical exponents can
be expressed in terms of the anomalous dimensions yi as-
sociated to the relevant scaling fields [28] (temperature
t, bulk h and boundary hs magnetic fields), for example
β = (d− yh)/yt and β1 = (d− 1− yhs)/yt.

The (1, 1) surface of the disordered Ising model on a
square lattice has recently been investigated through MC
simulations by Selke et al. [29,30]. (For a related study
of the critical behaviour at an internal defect line in the
disordered Ising model, see Ref. [31].) The critical expo-
nent β1 was found robust against dilution keeping the pure
system value β1 = 1/2 and no logarithmic correction has
been observed, in contradistinction with the correspond-
ing bulk behaviour. The surface properties of the 8-state
RBPM were also considered in references [19,27].

In this paper, we report extensive MC and Transfer
Matrix studies of the critical behaviour of both the sur-
face and bulk magnetizations of the disordered Potts fer-
romagnets for different values of 3 ≤ q ≤ 8. Our study ex-
tends previous investigations in several directions. First,
we investigate the temperature dependence of the bulk
and surface magnetizations and calculate the critical ex-
ponents β and β1. Second, we consider strip-like systems
with fixed spin boundary conditions (BC), determine the
magnetization profile at the critical temperature and cal-
culate the scaling dimensions xb = 2 − yh = β/ν and
x1 = 1 − yhs = β1/ν from predictions of conformal in-
variance. Our third investigation concerns the possible
multifractal behaviour of the correlation function and the
critical magnetization profile. The n-th moments of both
quantities are found to follow predictions of conformal in-
variance and the scaling dimensions x(n)

b and x(n)
1 are ob-

tained n-dependent.
The structure of the paper is the following. In Sec-

tion 2, we present briefly the model and the simulation
techniques. Section 3 is devoted to the approach to crit-
icality, while in Section 4, magnetization profiles in the
transverse direction of strips with fixed-free boundary con-
ditions are computed. Multifractality is studied in Sec-
tion 5 and a discussion of the results is given in Section 6.

2 Model and algorithms

2.1 The random-bond Potts model

We consider Potts-spin variables, σl,k ∈ 1, 2, . . . , q on the
sites of a square lattice with l = 1, 2, . . . , L columns and
k = 1, 2, . . . ,K rows, with independent random nearest-
neighbour ferromagnetic interactions Jlk and J ′lk in the
horizontal and vertical directions, respectively, which have
the same distribution and could take two values, J1 > J2,
with equal probabilities:

P(Jlk) =
1
2
δ(Jlk − J1) +

1
2
δ(Jlk − J2). (3)

The Hamiltonian of the model is thus written

−H =
∑
l,k

(
Jlkδσl,k,σl+1,k + J ′lkδσl,k,σl,k+1

)
. (4)

In the thermodynamic limit L,K → ∞ the model is
self-dual and the self-duality point

[exp(J1/kBTc)− 1][exp(J2/kBTc)− 1] = q, (5)

corresponds to the critical point of the model if only one
phase transition takes place in the system [32,33]. This as-
sumption is strongly supported by numerical calculations.

The degree of dilution in the system can be varied
by changing the ratio of the strong and weak couplings,
r = J1/J2. At r = 1, one recovers the perfect q-state
Potts model, whereas for r→∞ we are in the percolation
limit, where Tc = 0. The intermediate regime of dilution
1 < r < ∞ is expected to be controlled by the random
fixed-point located at some r = r?(q).

2.2 Monte Carlo simulations

For the simulation of spin systems, standard Metropo-
lis algorithms based on local updates of single spins suf-
fer from the well known critical slowing down. As the
second-order phase transition is approached, the correla-
tion length becomes longer and the system contains larger
and larger clusters in which all the spins are in the same
state. Statistically independent configurations can be ob-
tained by local iteration rules only after a long dynamical
evolution which needs a huge number of MC steps and
makes this type of algorithm inefficient close to a critical
point.

Since disorder changes the transition of the Potts
model into a second-order one, the resort to cluster update
algorithms is more convenient [34,35]. These algorithms
are based on the Fortuin-Kasteleyn representation [36]
where bond variables are introduced. In the Swendsen-
Wang algorithm [37], a cluster update sweep consists of
three steps: Depending on the nearest neighbour exchange
interactions, assign values to the bond variables, then
identify clusters of spins connected by active bonds, and
eventually assign a random value to all the spins in a given
cluster. The Wolff algorithm [38] is a simpler variant in
which only a single cluster is flipped at a time. A spin is
randomly chosen, then the cluster connected with this spin
is constructed and all the spins in the cluster are updated.

Both algorithms considerably improve the efficiency
close to the critical point and their performances are com-
parable in two dimensions, so in principle one can equally
choose either one of them. Nevertheless, when one uses
particular boundary conditions, with fixed spins along
some surface for example, the Wolff algorithm is less effi-
cient, since close to criticality the unique cluster will often
reach the boundary and no update is made in this case.
In the following, we will consider two different series of
simulations, one with free BC where the Wolff algorithm
will be used, and the other with fixed-free BC for which
we have chosen the Swendsen-Wang algorithm.
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Table 1. Details of the parameters used for MC computations
(Wolff algorithm). These values are given for the case q = 8,
r = 10. 25% of cluster flips have been discarded for thermal-
ization.

t L×K # of realizations # of cluster flips
0.02 640×320 317 10000
0.05 160×160 150 10000

320×320 184 10000
640×320 291 10000

0.1 320×320 303 10000
0.15 320×320 303 10000

160×320 84 10000
160×160 56 10000

0.175 160×160 100 10000
0.2 320×320 119 10000
0.225 160×160 100 5000
0.25 160×160 187 5000
0.275 160×160 100 5000
0.3 160×160 187 5000

80×160 400 5000
0.35 160×160 187 5000
0.4 160×160 187 5000
0.45 160×160 187 5000
0.5 160×160 187 5000

3 Approach to criticality

In this section we consider square shaped systems, where
L and K are equal, with L ranging from 40 to 640 to
check finite size effects. In the vertical direction we im-
pose periodic boundary conditions, thus σl,K+1 ≡ σl,1,
for l = 1, 2, . . . , L, whereas in the horizontal direction the
boundary spins at l = 1 and l = L are free. Thus we have
a pair of (0, 1) surfaces, obtained by cutting bonds along
the vertical axis of the system.

According to numerical studies about the bulk quan-
tities of the random model the finite size corrections are
very strong unless the calculations are performed close to
the random fixed-point [27]. The approximate position of
r∗(q) is listed in Table 3 for different values of q, as ob-
tained from the maximum condition of the central charge
of the model [27,39]. Our simulations were performed at
these fixed-point values of the dilution, but for comparison
we have also considered systems with somewhat different
values of r.

We averaged over an ensemble of bond configurations
and the number of different realizations ranged from sev-
eral hundreds to several thousands. In the simulations the
one-cluster flip Monte Carlo algorithm was used, generat-
ing several 104 clusters per realization close to the critical
point. As in earlier studies the statistical errors for each
realization were significantly smaller than those obtained
by averaging over the different realizations. This is the
reason of using a relatively large number of realizations
in the ensemble averaging. The details of the parameters
used in the MC simulations are given in the case q = 8,
r = 10 in Table 1.
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Fig. 1. Profile of the q = 6 model with free BC for two values of
r at a distance t = 0.02 from the critical point. The size is 320×
320 and average was performed over 180 and 44 realizations of
disorder for r = 8 and 10, respectively.

In the MC simulations we calculated the magnetization
profile, defined as

[m(l)]av =
1
K

[|
∑
k

ml,k|]av , (6)

where ml,k = (q〈δσl,k,1〉 − 1)/(q − 1) is the local Potts
order-parameter and the summation goes over the spins
in the l-th column, k = 1, 2, . . . ,K. The brackets 〈. . . 〉
and [. . . ]av stand for thermal and ensemble averages, re-
spectively. The absolute values are taken in order to ob-
tain non-vanishing profiles for finite systems. The surface
magnetization is given by [m1]av = [m(1)]av = [m(L)]av.

The local magnetization, [m(l)]av, shows a monotonic
decrease on approach to the free surface, due to the re-
duced coordination number close to the boundary. This is
illustrated in Figure 1 for the random q = 6 model with
dilutions r = 8 and r = 10 at the same distance t = 0.02
from the critical temperature Tc in equation (5). The re-
duced temperature is defined by t =| K −Kc | /K where
K = J/kBT . As it can be seen, the randomness tends to
reduce order, thus the magnetization is decreasing with di-
lution. The magnetization profile displays a plateau at the
center of the system, the value of which defines the bulk
magnetization, [mb]av = [m(L/2)]av, at the given temper-
ature. The surface region of the profile has a characteristic
size of ξr, which is expected to scale like to the bulk corre-
lation length, ξ ∼ t−ν , as the critical point is approached.
For the random Potts model the correlation length expo-
nent, ν, is close to 1, for all values of q [24].

In the thermodynamic limit, L → ∞, as the crit-
ical temperature Tc in (5) is approached, the magne-
tization profile [m(l)]av goes to zero as a power-law,
[m(l)]av ∼ tβ(l), where β(1) = β(L) = β1 and β(l) = β
for ξr < l < L − ξr, where β1 and β are the usual sur-
face and bulk critical exponents, respectively. The tem-
perature dependence of bulk and surface magnetization
is shown in Figure 2. To estimate the values of these
critical exponents from simulation data one may define
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Fig. 2. Temperature dependence of the surface and bulk mag-
netization (q = 8, r = 10). The dashed lines are guide for the
eyes where the extrapolated exponents of Table 3 have been
used.
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Fig. 3. Temperature-dependent effective exponents βeff (l) for
the surface and bulk magnetization for q = 8, r = 10. In the
case of the bulk, the error bars are smaller than the symbol
sizes.

temperature-dependent effective exponents

βeff(l) =
d ln[m(l)]av

d ln t
, (7)

which are approximated by using data at discrete temper-
atures, say, t + ∆t/2 and t − ∆t/2. In the limit of suffi-
ciently small ∆t and t the effective exponents approach
the true critical exponents, presuming that the system is
large enough so that finite-size effects play no role (to
avoid finite-size effects, L should be much larger than the
size of the surface region, ξr, and the bulk correlation
length, ξ).

In the actual calculation, we approached the critical
point by calculating βeff(l) for several temperatures, t,
ranging from 0.05 to 0.45 with∆t = 0.05. As shown in Fig-
ures 3 and 4, the effective exponents of the random q = 8
and q = 3 Potts models approach linearly their limiting
value. To obtain an accurate estimate for the true criti-
cal exponents we analyzed and extrapolated the data for
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Fig. 4. Same as Figure 3 , for q = 3, r = 5.

βeff(l) using different types of correction to scaling forms.
The most successful correction for the surface magnetiza-
tion, written as

[m1]av ∼ atβ1(1 + btθ), (8)

was obtained with θ ' 1.
The estimates for the surface and bulk magnetization

critical exponents are given for different dilutions in Ta-
ble 2. The pure case values at q = 3 and 4 have also
been computed to check the method [40]. The case q = 4
involves known logarithmic corrections which were taken
into account [40,41]. In the random case, as already ob-
served in Finite Size Scaling studies by different authors
(e.g. in Ref. [21]), due to crossover effects, the disorder am-
plitude has a sensible influence on the exponents. At the
optimal disorder amplitude deduced from the behaviour of
the central charge [27], the exponents reach their random
fixed point values summarized in Table 3. As seen in the
Table, both surface and bulk critical exponents depend on
the value of q and there is a monotonic increase with in-
creasing q. Provided that the correlation length exponent
is close to 1 for any value of q, this observation is in accor-
dance with previous estimates on the bulk magnetization
scaling dimension xb = β/ν obtained in reference [27] at
the random fixed point and recalled in the Table.

At this point we are going to check the self-averaging
properties of the local magnetization in the vicinity of the
system critical temperature. For non-self-averaging quan-
tities, the reduced variance does not vanish in the ther-
modynamic limit, indicating that fluctuations never be-
come negligible [42]. Here we studied different moments of
the local magnetization and determined the correspond-
ing critical exponent, β(n), defined through [mn]1/nav ∼
tβ

(n)
[43–45]. For self-averaging quantities, β(n) is ex-

pected to be independent of n. As seen in Table 4 the crit-
ical exponents both for the bulk and surface magnetiza-
tions are found to be independent of n, at least within the
error of the numerical calculations. Thus we conclude that
the local magnetization as the critical point is approached
is self-averaging. This observation is in agreement with
the expectation, that outside the critical point, where
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Table 2. Bulk and surface exponents deduced from the ap-
proach to criticality at different disorder amplitudes. The vari-
ation of the exponents, outside the standard deviation, is due
to crossover effects.

q r β1 ∆β1 β ∆β
3 1 0.541 0.009 0.112 0.002

4 0.542 0.010 0.135 0.010
5 0.542 0.011 0.1361 0.0008
10 0.504 0.020 0.141 0.004

4 1 0.666 0.009 0.0831 0.0002
4 0.56 0.02 0.1332 0.0004
7 0.561 0.022 0.142 0.002
10 0.534 0.029 0.146 0.003

6 8 0.581 0.028 0.149 0.003
10 0.566 0.018 0.149 0.003

8 10 0.597 0.023 0.1513 0.0004

Table 3. Bulk and surface exponents deduced from the ap-
proach to criticality at the q-dependent optimal disorder am-
plitude r?. The last column recalls the bulk scaling dimension
xb = β/ν obtained with the same disorder amplitudes in ref-
erence [27].

q r? β1 β xb
3 5 0.542(10) 0.136(1) 0.132(3)
4 7 0.561(22) 0.142(2) 0.139(3)
6 8 0.581(28) 0.149(3) 0.146(3)
8 10 0.597(23) 0.151(1) 0.150(3)

Table 4. Test of self-averaging in the off-critical behaviour of
surface and bulk magnetization (q = 8, r = 10): The power law

behaviours of [mn
1 ]

1/n
av and [mn

b ]
1/n
av define only two exponents,

for boundary and bulk behaviours, respectively.

n β
(n)
1 β(n)

0.01 0.601(21) 0.1516(4)
1 0.597(23) 0.1513(4)
2 0.592(21) 0.1513(5)
3 0.587(20) 0.1513(5)
4 0.582(21) 0.1513(5)

the system size is much larger than the correlation length,
the central limit theorem is expected to apply, which im-
plies self-averaging behaviour. At the critical point, how-
ever, where the above argument does not hold one may
obtain non-self-averaging behaviour, as was observed re-
cently by Olson and Young [22] for the bulk spin-spin
correlation function. We are going to study this issue in
Section 5.

4 Magnetization profile in strips at criticality

4.1 Conformal profiles in homogeneous strips

In a system which is geometrically constrained by the pres-
ence of surfaces, the local order-parameter evolves from
the surface towards the bulk behaviour and the appro-
priate way to describe the position-dependent physical
quantities is to use density profiles rather than bulk and
surface observables. This is particularly important close

Fig. 5. Profile with fixed-free BC in the transverse direction.
In the computations, periodic BC are used in the longitudinal
direction.

to the critical point where the correlation length, which
measures the surface region, is diverging.

For example, in a homogeneous critical system, infinite
in one direction, k ∈]−∞,+∞[, and confined between two
parallel plates, which are at a large, but finite distance
L apart, the local order parameter m(l) varies with the
distance l ∈ [1, L] from one of the plates as a smooth
function of l/L. According to the Fisher and de Gennes
scaling theory [46]:

m(l) = L−xbF (l/L), (9)

where the scaling function F (l/L) depends on the bound-
ary conditions at the two plates. In the middle of the
strip, l = L/2, one recovers the Finite Size Scaling be-
haviour of the bulk magnetization m(L/2) ∼ L−xb . In
two-dimensions, conformal invariance gives further con-
straints on the profile [48]. In the following, we consider
the fixed-free BC, i.e. we fix the spins to the state σ1,k = 1
only at one boundary of the system, the other surface be-
ing free. As in Section 3, we choose periodic BC in the
vertical direction, σl,K+1 = σl,1. The conformal and scal-
ing results are strictly valid as K → ∞, however the
corrections for K � L are expected to be small. For
such conformally invariant, non-symmetric boundary con-
ditions, the scaling function has been predicted for several
models [40,47]:

m(l) = A
[
L

π
sin
(
π
l

L

)]−xb [
cos
(
πl

2L

)]x1

. (10)

We mention that with the functional form in equa-
tion (10) one recovers the usual finite-size scaling be-
haviour, m(L) ∼ L−x1 , close to the free surface at crit-
icality. The typical shape of the magnetization profile in
a strip with fixed-free BC is shown in Figure 5.

4.2 Application to random systems

In random systems, the conformal invariance prescrip-
tions are recovered after disorder average [26,49]. The bulk
critical properties of disordered Potts models have been
investigated at criticality through conformal techniques
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Table 5. Parameters for the MC simulations at criticality.
The same parameters are used for all values of q. The number
of disorder realizations is increased at larger sizes. At each
disorder realization, 1000 MC sweeps are discarded and 5000
MC sweeps are used to compute physical quantities.

L K # of realizations
10 100, 200, 300, 400 and 500 1000
14 100, 200, 300, 400 and 500 1000
18 138, 277, 555 and 833 1000
24 80 and 96 1000

192, 384 and 500 4000
30 100 and 200 1000

300, 400 and 500 4000
40 100 and 200 1000

300, 400 and 500 4000

0 0.5 1

(l−1/2)/L

0

0.5

1

[m
(l

)]
av

q=3
q=8

Fig. 6. Profile with fixed-free BC for two values of q. The size
L×K of the strips of width L = 40 ranges between 40 × 200
(upper profiles) and 40× 500 (lower profiles), and average was
performed over 1000 to 4000 realizations of disorder. Error bars
are smaller than the symbols.

by various authors [23–27], using the longitudinal correla-
tion function decay along periodic strips or the magnetiza-
tion profiles in square-shaped systems with fixed bound-
ary conditions along all the surfaces. Here, we consider
the magnetization profiles of long strips with fixed-free
boundary conditions in the transverse direction. Since a
sufficient strip width is needed in order to apply the con-
tinuum limit conformal results in the transverse direction,
TM techniques are useless (the strip width is limited to
L ≤ 10 using the connectivity TM) and MC simulations
are preferred (with L ≤ 40). The parameters used in this
work for the MC simulations are given in Table 5. We
mention that in spite of the large sizes used, the contin-
uum limit is only approximately reached and perturbing
effects will be expected close to the boundaries.

Examples of profiles with fixed-free BC are shown in
Figure 6 for q = 3 and 8 for different strip lengths K at a
fixed width L = 40. The influence of the length K of the
strip becomes negligible when K ≥ 300.
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Fig. 7. Examples of effective surface and bulk scaling dimen-
sions for q = 4 and a disorder amplitude r? = 7. The size of
the strip are 40 × K, with K = 100, 200, . . . , 500. Between
K = 300 and 500, the effective exponents remain constant up
to the accuracy of the computations. Average was performed
over 1000 to 4000 realizations of disorder.

Introducing the variable ζ = l−1/2
L in equation (10),

one thus expects the following behaviour:

[m(ζ)]av = A(π/L)xb [sinπζ]−xb [cosπζ/2]x1 . (11)

In order to simplify the following expressions, we introduce
the functions f(ζ) = sinπζ and g(ζ) = cosπζ/2, and the
ratio

R(ζ, ζ′) =
[m(ζ)]av

[m(ζ′)]av
· (12)

Since f(ζ) is symmetric with respect to the middle of the
strip ζ = 1

2 , the surface dimension x1 can be deduced from
local symmetric values of the profile:

R(ζ, 1− ζ) =
[

g(ζ)
g(1− ζ)

]x1

= [cotπζ/2]x1 , (13)

or

x1 =
lnR(ζ, 1− ζ)
ln[cotπζ/2]

· (14)

Examples of effective surface scaling dimensions, accord-
ing to equation (14), are shown in Figure 7 for q = 4
with 4000 different configurations of couplings for strips
of width L = 40 and increasing lengths from K = 100
to 500.

In the thermodynamic limit, these scaling dimensions
should be unambiguously determined for any value of
the position ζ in the transverse direction of the strip. In
practice, due to the finite size of the system and to lat-
tice effects close to the boundaries1, equation (14) defines

1 Close to the surfaces, ζ → 0, lattice effects and probable
corrections to scaling spoil the results, while near the middle
of the strip width, ζ → 1/2, the precision becomes very low
due to the proximity of the points used for the computation of
the exponents.
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Fig. 8. Effective surface exponent at ζ = 0.25 plotted against
L−1. The intercept corresponds to the extrapolated value in
the thermodynamic limit: x1(0.25,∞).

Table 6. Extrapolation in the thermodynamic limit of the
scaling dimension of the surface magnetization, x1(ζ,∞), mea-
sured at different values of ζ. The last column presents our
definitive determination for each value of q.

ζ

q r? ζ → 0 0.20 0.25 0.30 x1

3 5 0.438(1) 0.518(1) 0.526(2) 0.525(3) 0.523(2)
4 7 0.453(1) 0.541(2) 0.553(2) 0.552(3) 0.549(2)
6 8 0.478(1) 0.567(2) 0.577(2) 0.574(4) 0.573(3)
8 10 0.482(1) 0.577(2) 0.588(3) 0.588(5) 0.584(3)

effective quantities x1(ζ, L) which do depend on the po-
sition ζ along the strip, and also on the strip width and
evolve towards the right limit when L→∞. As it was al-
ready visible in Figure 6, between K = 300 and K = 500,
the strip length can be considered to be long enough in
order to avoid finite-size effects in the long direction. For
these strip lengths, one can also observe a plateau in Fig-
ure 7 where there is no significant variation of the effec-
tive exponents which remain almost constant in the region
ζ = 0.20− 0.35, and whose extrapolated values should be
consistent. The values computed in the plateau region are
thus studied as L increases and extrapolation is made to-
wards the thermodynamic limit L→∞. The dependence
of the effective exponents on the strip width is shown in
Figure 8 for ζ = 0.25. A linear extrapolation leads to the
estimations of x1(ζ,∞), collected in Table 6. The results
exhibit a good stability relative to the position ζ and allow
a final determination of the scaling dimension x1, given
in the last column of the table. On the other hand, we
observe important corrections to scaling in the boundary
behaviour, since the surface exponent falls down rapidly
as ζ → 0. This effect is the possible origin of the dis-
crepancy with the boundary scaling dimension found in
reference [19] for q = 8: x1 ' 0.47, which is recovered here
in the limit ζ → 0.
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Fig. 9. Extrapolation to infinite width of the profiles. The
solid lines corresponds to q = 8 and the dashed lines to q = 3.
Two fitting curves are presented (for ζ = 0.25, q = 3), a least
square linear fit (dotted line) and quadratic (solid line). The
quadratic fit is more accurate.

For the bulk exponent, using the quantity

R(ζ, 1/2) = [f(ζ)]−xb [
√

2g(ζ)]x1 , (15)

we can form a combination where x1 cancels, leading to:

xb = {lnR(ζ, 1/2) ln[
√

2g(1− ζ)]
− lnR(1− ζ, 1/2) ln[

√
2g(ζ)]}

×
{

ln[f(ζ)] ln
[

g(ζ)
g(1− ζ)

]}−1

. (16)

This expression involves three points of the profile and is
thus subject to stronger numerical fluctuations than the
surface scaling dimension, as shown in Figure 7. Unfortu-
nately, compared to previous precise determinations, no
accurate extrapolation can be made here. One can how-
ever check the conformal expression (11). For that pur-
pose, it is necessary to extrapolate the rescaled profiles
[mL(ζ)]Lxb , obtained at finite sizes, towards the thermo-
dynamic limit. Considering, as we did before, that the
longer strips are large enough to be unaffected by finite-
size effects in the long direction, extrapolation to infinite
width L only will be done. For each position ζ in the
transverse direction, we plot the corresponding local mag-
netization as computed for different strip widths and then
extrapolate in the limit L → ∞. Examples of linear and
quadratic least square fits are shown in Figure 9. The
latter one has been preferred.

It leads to an extrapolated profile, which is compared
to the conformal expression in Figure 10 for q = 8. In the
conformal formula, the scaling dimensions of Tables 3 and
6 are entered and the amplitude is the only free parameter.
In spite of the small strip widths considered, the extrapo-
lation procedure introduced in Figure 9 is very accurate,
since the agreement between extrapolated data (full cir-
cles) and equation (11) (solid line) is fairly satisfactory.
This is a strong evidence which supports the validity of
the conformal expression for the profile.
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Fig. 10. Rescaled profiles at different strip widths for q = 8
(open symbols) and extrapolation to L→∞ (full circles). The
solid line is the conformal expression where the amplitude is the
only free parameter. The agreement between the extrapolated
data and the conformal profile is very good.

5 Multifractal behaviour at criticality

In this section, we study the possible multifractal be-
haviour at the critical point and consider different mo-
ments for the magnetization profile, [mn(l)]1/nav , and that
of the correlation function [Gnσ(r)]1/nav . The characteristic
exponents, x(n)

b and x
(n)
1 , in the bulk and at the surface,

respectively, are expected to vary with n for multifractal
behaviour. Indeed, it was first Ludwig [8] who predicted
multifractality in the bulk correlation function of the ran-
dom bond Potts model by conformal perturbative meth-
ods (see also the results by Lewis in Refs. [50,51]), which
was confirmed recently by Olson and Young [22] by MC
simulations in the square geometry. Here we rather work
in the strip geometry and calculate both the bulk and
surface scaling exponents.

The calculations about the moments of the critical
profile are parallel with that in the previous section and
the scaling dimensions are extracted from the expected
functional form:

[mn(ζ)]1/nav = A(π/L)x
(n)
b [sinπζ]−x

(n)
b [cosπζ/2]x

(n)
1 , (17)

which is analogous to (11) for the average behaviour, i.e.
for n = 1. We note that the typical behaviour corresponds
to n = 0, i.e. exp[lnm(ζ)]av .

In the actual calculation we have considered the q = 8
model on strip-like samples with K = 500 and L =
10, 20, 30 and 40 and the average is performed over 5000
realizations. Using the method of the previous section first
we deduced from equation (17) the effective, size and po-
sition dependent surface scaling dimensions, x(n)

1 (ζ, L),
which are then extrapolated to the thermodynamic limit,
L → ∞. The extrapolation procedure is demonstrated in
Figure 11, whereas the extrapolated data are presented in
Table 7. As one can see in this Table the critical point
surface magnetization of the random bond Potts model
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Fig. 11. Effective surface dimensions of the nth-order mo-
ments of the magnetization profile, evaluated at ζ = 0.25
for q = 8 and n = 0, 1, 2, 3. Dashed lines denote results of
quadratic extrapolation.

Table 7. Extrapolation in the thermodynamic limit of the
scaling dimension associated to the moments of the surface
magnetization and measured at different values of ζ (q = 8).
The last row presents our definitive determination.

ζ

n 0.20 0.25 0.30 0.35 x
(n)
1

0 0.601(7) 0.600(7) 0.602(9) 0.599(11) 0.600(9)
1 0.585(5) 0.582(6) 0.582(8) 0.579(11) 0.582(8)
2 0.496(3) 0.496(4) 0.500(6) 0.498(8) 0.498(5)
3 0.387(11) 0.384(14) 0.384(18) 0.381(25) 0.384(17)

shows multifractal behaviour: The scaling dimensions of
the different moments of the surface magnetization, x(n)

1 ,
are monotonously decreasing with n. Note that for n = 2
the surface scaling dimension is very close to the pure (and
random) Ising value of x1 = 1/2.

Next we turn to study the multifractal behaviour
of the bulk magnetization. As mentioned in the pre-
vious section, from the magnetization profiles in finite
strips one cannot extract precise estimates for the scaling
dimension x

(n)
b . Therefore we used a different technique,

based on the Blöte and Nightingale connectivity transfer
matrix [52]. Since transfer operators in the time direction
do not commute in disordered systems, the free energy
density is defined by the leading Lyapunov exponent. For
an infinitely long strip of width L with periodic boundary
conditions, the leading Lyapunov exponent is given by the
Furstenberg method [53]:

Λ0(L) = lim
m→∞

1
m

ln

∣∣∣∣∣∣
∣∣∣∣∣∣
 m∏
j=1

Tj

 |v0〉

∣∣∣∣∣∣
∣∣∣∣∣∣ , (18)

where Tj is the transfer matrix and | v0〉 is a unit initial
vector. The free energy density is thus given by [f0(L)]av =
−L−1Λ0(L). For a specific disorder realization,
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Fig. 12. Spin-spin correlation function on a long strip with
periodic BC in the transverse direction (the upper left corner
also corresponds to the upper right corner). This figure is a 3D
plot where the value of the correlation function between the
origin (upper left corner) and any lattice site (k, l) is plotted
on a vertical axis at position (k, l).

the spin-spin correlation function along the strip

Gσ(k) =
q〈δσl,1σl,k+1〉 − 1

q − 1
, (19)

follows from the application of products of transfer matri-
ces on the ground state eigenvector associated to Λ0 (for
details see, e.g. Ref. [27]).

We will now assume that conformal covariance can be
applied to the order parameter correlation function and
its moments. In the infinite complex plane z = x + iy
the correlation function exhibits the usual algebraic decay
at the critical point [Gnσ(ρ)]1/nav = const × ρ−2x

(n)
b , where

ρ =| z1 − z2 |. Under the logarithmic transformation w =
L
2π ln z = k + il , one gets the usual exponential decay

along the strip [Gnσ(k)]1/nav = const× exp
(
− 2π

L x
(n)
b k

)
(see

Fig. 12 for an illustration). The scaling dimension x(n)
b can

thus be deduced from an exponential fit.
This method was used in reference [27] for the average

correlation function, i.e. for n = 1. In this work, we calcu-
late the higher moments, as well as the typical behaviour,
which corresponds to n = 0.

For each strip size (L = 2 − 8), we considered sys-
tems of length ∼ 106 and an average is performed over
80× 103 disorder configurations. For a given strip the ef-
fective, size-dependent exponents follow from a linear fit
in a semi-log plot, as exemplified in Figure 13. It is clearly
seen that the scaling dimensions are different for the dif-
ferent moments of the spin-spin correlation function. The
effective exponents are then extrapolated as L → ∞ and
the estimated values are presented in Table 8 for different
values of q (at r?(q)).

Again the critical point bulk magnetization shows mul-
tiscaling behaviour; for all q ≥ 3 the scaling dimensions,
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Fig. 13. Moments of the spin-spin correlation function
(semi-log scale) for q = 8, L = 7.

Table 8. Scaling dimensions of the moments of the spin-spin
correlation function computed at r = r?.

x
(n)
b

n q = 3 q = 4 q = 6 q = 8
0 0.154(1) 0.177(1) 0.207(1) 0.234(1)
1 0.132(1) 0.138(1) 0.146(1) 0.150(1)
2 0.116(1) 0.114(1) 0.114(1) 0.112(1)
3 0.104(1) 0.097(1) 0.094(2) 0.091(2)
4 0.095(2) 0.087(2) 0.081(2) 0.077(2)
5 0.088(2) 0.079(2) 0.072(2) 0.068(2)
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Fig. 14. Decay exponents of the moments of the spin-spin
correlation function [Gnσ(k)]av, plotted against the order of the
moment. The deviation to the straight line indicates multifrac-
tal behaviour.

x
(n)
b , are monotonously decreasing with n. An alternate

presentation of this result is shown in Figure 14, where
the scaling dimensions of the moments [Gnσ(k)]av are plot-
ted against the order of the moment, n. In case of self-
averaging, a linear behaviour would be expected, as shown
by the dashed line.
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Table 9. Scaling dimensions of the moments of the spin-spin
correlation function computed at r = r?. The numerical esti-
mates on the first column are compared to the results of the
1st and 2nd order perturbation theory in equation (20).

x
(n)
b for the 3-state Potts model

n num. 1st order 2nd order
0 0.154(1) 0.158 0.157
2 0.116(1) 0.108 0.118
3 0.104(1) 0.083 0.110

x
(n)
b for the 4-state Potts model

n num. 1st order 2nd order
0 0.177(1) 0.188 0.181
2 0.114(1) 0.063 0.120
3 0.097(1) 0.000 0.167

One can make a comparison with perturbative results:

x
(n)
b = xpb −

9
32

(n− 1)
[

2
3
ε+ (A+B(n− 2))ε2 +O(ε3)

]
,

(20)

where xpb is the bulk exponent in the pure model, ε is a
small expansion parameter related to the deviation of the
pure model’s central charge to that of the Ising model
(ε = 2/15 and 1/3 for q = 3 and 4, respectively [51]), and
A = 11/12− 4 ln2 and B = 1

24 (33− 29
√

3π/3) are numer-
ical factors. The first-order term in equation (20) is due
to Ludwig [8] and the second-order term to Lewis [50].
This result is known to be valid close to q = 2 and for the
lower moments. The comparison with our data is made in
Table 9. One can observe a good agreement with the re-
sult of Lewis for q = 3, especially for the lower moments.
For q = 4, the perturbation expansion probably breaks
down already at n = 3, since x(3)

b is found to be larger
than x(2)

b with the formula of Lewis. It is remarkable that
the second-order term in the perturbation expansion van-
ishes at n = 2, which could explain the stability of the
exponent associated to the second moment, with respect
to variations of q, has already been noticed by Olson and
Young [22].

We close this section by presenting different moments
of the magnetization profile, [mn(l)]1/nav , as extrapolated
towards L → ∞. In Figure 15 two moments (n = 0 and
n = 2) of the scaled profiles are plotted for the q = 8
model, where the open symbols represents the finite-width
data. The extrapolated profile, denoted by full circles is
in perfect agreement with the conformal results in equa-
tion (17), where the scaling dimensions x(n)

b and x
(n)
1 are

taken from Tables 8 and 10, respectively, and the only
fitting parameter is the amplitude in equation (17). We
consider this agreement as a strong evidence in favour of
the validity of the conformal expression for the averaged
moments of the order parameter profile.
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Fig. 15. Rescaled nth-order profiles at different strip widths
for q = 8 (open symbols) and extrapolation to L → ∞ (full
dots). The solid line is the conformal expression with only the
amplitude as a free parameter.

6 Discussion

In this paper the critical behaviour of the two-dimensional
random bond Potts model is studied by MC simulations,
transfer matrix techniques and conformal methods. New
features of our present work are the following. i) For the
first time we have investigated the surface critical be-
haviour of the model and determined the surface magne-
tization critical exponent, β1, from approach to criticality.
In addition we got estimates for the corresponding bulk
exponent, β. ii) We have studied the critical point mag-
netization profiles in strip-like geometries and deduced
the scaling dimension x1 = β1/ν from the predictions
of conformal invariance. iii) We have presented numerical
evidence for the multifractal behaviour of the surface and
bulk magnetizations at the critical point and the scaling
dimensions of the averaged moments, x(n)

b and x(n)
1 are cal-

culated. iv) Finally, we have demonstrated that the differ-
ent moments of the critical magnetization profiles, as well
as the correlation function obey conformal invariance.

The critical exponents and the scaling dimensions of
the average quantities are continuously varying functions
of q, however an exponent relation 4β = β1 is approxi-
mately satisfied, as can be observed in Table 3. We note
that for percolation with q = 1, quenched disorder is
irrelevant and the above relation is only approximate,
since 4β = 5/9 and β1 = 4/9. It is also noted that
density profiles for percolation have been investigated in
references [54–57].

The anomalous dimensions of the relevant scaling fields
in equations (1) and (2) can be estimated using the scaling
relations: yt = 1/ν = xb/β = x1/β1, yh = 2 − xb, and
yhs = 1−x1. Their values are presented in Table 10. While
yt remains close to 1 (but ν satisfies the limit ν ≥ 2/d [58])
for all values of q, the anomalous dimensions related to the
magnetic field vary with q.
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Table 10. Anomalous dimensions of the relevant bulk and
surface scaling fields.

q r? xb/β x1/β1 2− xb 1− x1

3 5 0.971(29) 0.965(6) 1.868(3) 0.477(2)
4 7 0.979(35) 0.979(13) 1.862(3) 0.451(2)
6 8 0.980(40) 0.986(18) 1.854(3) 0.427(3)
8 10 0.993(26) 0.978(18) 1.849(3) 0.416(3)
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40. E. Carlon, F. Iglói, Phys. Rev. B 57, 7877 (1998).
41. J. Salas, A.D. Sokal, J. Stat. Phys. 88, 567 (1997).
42. A. Aharony, A.B. Harris, Phys. Rev. Lett. 77, 3700 (1996).
43. B. Derrida, Phys. Rep. 103, 29 (1984).
44. S. Wiseman, E. Domany, Phys. Rev. Lett. 81, 22 (1998).
45. S. Wiseman, E. Domany, Phys. Rev. E 58, 2938 (1998).
46. M.E. Fisher, P.G. de Gennes, C. R. Acad. Sci. Paris B

287, 207 (1978).
47. T.W. Burkhardt, T. Xue, Phys. Rev. Lett. 66, 895 (1991).
48. Considering a semi-infinite system described by z = x +

iy = ρeiθ, y ≥ 0, ordinary scaling implies a functional
form in the half-plane, m(z) = y−xbG(x/ρ). Under the
logarithmic transformation into a strip of width L, w(z) =
L
π ln z = k + il, one obtains the order parameter profile as

m(w) = |w′(z)|−xbm(z).
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